

SYLLABUS FIRST YEAR

Master of Computer Applications

Syllabus and Course Structure of First Year MCA Programme at Arvind Gavali College of Engineering, Satara - Designed to nurture foundational knowledge, practical skills, and holistic development for future engineers

ARVIND GAVALI
COLLEGE OF ENGINEERING,
SATARA.

+91-9957100100
<http://www..agce.edu.in>
Panmalewadi, Varye, Satara

SAMARTH EDUCATIONAL TRUST
ARVIND GAVALI COLLEGE OF ENGINEERING, SATARA
(AN AUTONOMOUS INSTITUTE)

**Curriculum for First Year
M.C.A.**

List of Abbreviations

Sr. No.	Abbreviation	Description	Code
1	L	Lecture	
2	T	Tutorial	
3	P	Practical	
4	Cr	Credits	
5	BSC	Basic Science Course	BS
6	ESC	Engineering Science Course	ES
7	AEC	Ability Enhancement Course	AE
8	VSEC	Vocational and Skill Enhancement Course	VS
9	PCC	Program Core Course	PC
10	IKS	Indian Knowledge System	IK
11	CC	Co-curricular Course	CC

SAMARTH EDUCATIONAL TRUST**ARVIND GAVALI COLLEGE OF ENGINEERING**

•AN AUTONOMOUS INSTITUTE

▪ NAAC & NBA Accredited

▪ ISO 9001:2015

▪ ENGINEERING (B.Tech & M.Tech)

▪ BCA ▪ MCA ▪ B.VOC

Approved by AICTE, New Delhi, Recognised by Govt. of Maha., DTE Mumbai & Affiliated to Dr. Babasaheb Ambedkar Technological University (DBATU), Lonere.

- Address : At.Panmallewadi, Post.-Varye, Tal.& Dist.-Satara.-415 015 (Maharashtra)
- Mob : 9957100100, 9069700100
- Email ID : agcenggsatara@gmail.com / principal@agce.edu.in
- Website : www.agce.edu.in
- Institute Code : Engg. DTE EN-6545
- BCA 6545, MCA 6545, B.Voc 6545

As per NEP Guidelines, Proposed Scheme of Credit Distribution**First Year MCA 2025-26****SEMESTER II**

Sr. No.	Category	Course Code	Course Name	Teaching Scheme					Evaluation Scheme		
				L	T	P	Hrs. / Wk	Cr	Components	Max	Min for Passing
1	PCC	25MCA1201	Object Design & Agile Development	3	0	0	3	3	CA1	10	45
									MSE	30	
									CA2	10	
									ESE	50	20
2	PCC	25MCA1202	Computer Networks	3	1	0	4	4	CA1	10	45
									MSE	30	
									CA2	10	
									ESE	50	20
3	PCC	25MCA1203	Artificial Intelligence	3	0	0	3	3	CA1	10	45
									MSE	30	
									CA2	10	
									ESE	50	20
4	PEC	25MCA1204	Program Elective I	3	0	0	3	3	CA1	10	45
									MSE	30	
									CA2	10	
									ESE	50	20
5	OE	25MCA1205	Open Elective I	3	0	0	3	3	CA1	10	45
									MSE	30	
									CA2	10	
									ESE	50	20
6	PCC	25MCA1201L	Object Design & Agile Development Laboratory	0	0	2	2	1	CA1	25	20
									CA2	25	
									POE	--	
7	VSEC	25MCA1206L	Data Analysis with Python Laboratory	0	0	2	2	1	CA1	25	45
									CA2	25	
									POE	50	20
8	PCC	25MCA1203L	Artificial Intelligence Laboratory	0	0	2	2	1	CA1	25	45
									CA2	25	
									POE	50	20
9	Project	25MCA1207L	Mini Project	0	0	2	2	1	CA1	25	40
									CA2	25	
									OE	50	20
10	Internship	25MCA1208	Field Training / Internship / Industrial Training Evaluation					AU			
				Total	15	1	8	24	20		850

Total Contact Hours – 24 Total Credits – 20

Title of the Course: Object Design & Agile Development Course Code: 25MCA1201	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic programming knowledge. Understanding of software development lifecycle. Familiarity with object- oriented programming concepts

Course Description:

This course covers advanced software development methodologies, focusing on object-oriented programming and design using UML, distributed computing, and agile software development practices. It explores frameworks like Scrum and Kanban, design principles, and emphasizes software reuse, testing, and continuous integration for efficient and flexible software delivery.

Course Objectives:

By the end of this course, the students will be able to:

1. Understand object-oriented concepts, design, and analysis using UML
2. Learn distributed object computing and middleware standards
3. Grasp agile methodologies, principles, and benefits
4. Apply Scrum and Kanban frameworks in project management

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Apply object-oriented concepts and modeling techniques using UML for software analysis and design.
CO2	Understand and evaluate distributed object computing and middleware standards such as COM, DCOM, and CORBA.
CO3	Explain the principles, values, and benefits of Agile software development methodologies.
CO4	Apply Scrum framework elements (roles, events, artifacts) to manage Agile software projects.
CO5	Apply Kanban framework and Agile testing practices including test-driven development and test automation.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		2				2	2		
CO2	3	3	2	2	2							
CO3	2	2				2		2	2	2		2
CO4	2	2	3		2				3	2	3	2
CO5	2	3	2	2	3				2		2	3

Assessment Scheme:

Two components in semester Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%,30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and CA2 are based on Assignment/ Declared test/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Review of programming practices and code-reuse; Object model and object-oriented concepts; Object-oriented programming languages and implementation. Object- oriented analyses and design using UML structural, behavioral and architectural modeling. Unified development process, Software reuse design patterns, components and framework	08
2	Distributed object computing, interoperability and middle ware standards COM/DCOM and CORBA; Object-oriented database system data model, object definition and query language, object relational system.	07
3	Introduction Need of Agile software development, History of Agile, Agile context– manifesto, principles, methods, values. The benefits of agile in software development. Agile Design Methodologies Fundamentals, Design principles–Single responsibility, Open-closed, Liskov- substitution, Dependency inversion, Interface-segregation.	08
4	Scrum Introduction to scrum framework, Roles: Product owner, team members and scrum master, Events: Sprint, sprint planning, daily scrum, sprint review, and sprint retrospective, Artifacts: Product backlog, sprint backlog and increments. User stories- characteristics and contents.	08
5	Kanban Introduction to Kanban framework, Workflow, Limit the amount of work in progress, pulling work from column to column,	09

	Kanban board, adding policies to the board, The Agile lifecycle and its impact on testing, Test driven development– Acceptance tests and verifying stories, writing a user acceptance test, Developing effective test suites, Continuous integration, Code refactoring. Risk based testing, Regression tests, Test automation.	
--	--	--

Text Books			
Sr. No.	Title	Author	Publisher
1	Object Oriented System Analysis	Sally Shlaer	Prentice Hall PTR
2	Object Oriented System Analysis and Design using UML	Simon Bennett	McGraw-Hill.
3	Agile Software Development with Scrum	Ken Schwaber, Mike Beedle	Pearson
4	Agile Software Development, Principles, Patterns and Practices	Robert C. Martin	Prentice Hall

Reference Books			
Sr. No.	Title	Author	Publisher
1	User Stories Applied: For Agile Software Development	Mike Cohn	Addison Wesley Signature Series
2	Agile Testing: A Practical Guide for Testers and Agile Teams	Lisa Crispin, Janet Gregory	Addison Wesley
3	Agile: The Complete Overview of Agile Principles and Practices	Paul Newton	Agile Product Management
4	Agile Software Development, Principles, Patterns, and Practices	Robert Martin	Pearson New International Edition

Title of the Course: Computer Networks Course Code: 25MCA1202	L	T	P	Credit
	3	1	--	4

Course Prerequisite:

Students should have a basic understanding of operating systems, computer architecture, and programming fundamentals in C or Java. Familiarity with binary arithmetic, logical operations, and basic hardware concepts is expected.

Course Description:

This course provides a comprehensive introduction to computer networking principles, architectures, protocols, and technologies. It covers layered network models, data transmission fundamentals, LAN/WAN technologies, protocols at each OSI layer, routing algorithms, and network security. The course also explores wireless networking and application layer protocols such as HTTP, DNS, and FTP. Real-world protocols like TCP/IP are emphasized, enabling students to understand and evaluate modern network systems.

Course Objectives:

By the end of this course, the students will be able to:

1. Understand the architecture and protocols of computer networks.
2. Analyze and compare LAN technologies and wireless networks.
3. Apply error detection, correction, and flow control techniques in data link layer.
4. Understand routing algorithms, IP addressing, and congestion control methods.
5. Use application layer protocols and basic network security principles.
6. Develop problem-solving skills relevant to network design and performance evaluation.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Explain the basic concepts, applications, and models of computer networks including OSI and TCP/IP architecture.
CO2	Describe and differentiate various LAN and wireless technologies including Ethernet, Wi- Fi, Bluetooth, and WiMAX.
CO3	Explain the basic concepts, applications, and models of computer networks including OSI and TCP/IP architecture.
CO4	Describe and differentiate various LAN and wireless technologies including Ethernet, Wi- Fi, Bluetooth, and WiMAX.
CO5	Understand application layer protocols and the basics of network security including authentication and cryptography.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2		2					2
CO2	3	2	2	2	3		2					2
CO3	3	3	3	2	3		2					3
CO4	3	3	3	3	3		2					2
CO5	3	2	2	2	2		2					2

Assessment Scheme:

Two components in semester Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%,30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Introduction Applications of computer networks, Network hardware, Network software: Protocol Hierarchy, Design Issue, connection oriented vs. connectionless, Service Primitives, Reference models: OSI and TCP/IP, Example networks: Internet, Network standardization, Performance: Bandwidth and Latency, Delay and bandwidth product, High- Speed Network, Application Performance Needs.	08
2	LAN Technologies X5, Frame relay, ATM, Ethernet (802.3), FDDI, Token Rings, Resilient Packet Rings, Wireless LANs: Wi-Fi (802.11), Cell Phone Technologies, Broadband Wireless: Wi- MAX (802.16), Bluetooth (802.15.1), RFID.	08

3	<p>Data Link Layer Introduction, functions. Design Issues: Services to Network Layer, Framing. ARQ strategies: Error detection and correction, Parity Bits, Hamming Codes (11/12-bits) and CRC. Flow Control Protocols: Unrestricted Simplex, Stop and Wait, Sliding Window Protocol. WAN Connectivity: PPP and HDLC. MAC Sub layer: Multiple Access Protocols: Pure and Slotted ALOHA, CSMA, WDMA, CSMA/CD, CSMA/CA, Binary Exponential Back-off algorithm, Introduction to Ethernet IEEE 802.3, IEEE 802.11 a/b/g/n, IEEE 802.15 and IEEE 802.16 Standards.</p>	08
4	<p>Network Layer and Congestion Control IPv4/IPv6, Routers and Routing Algorithms distance vector link state. TCP UDP and sockets, General principles, Congestion prevention policies, Load shading, Jitter control, Quality of service: Packet scheduling, Traffic shaping, integrated Services, Routing Protocols: RIP, OSPF, BGP, MPLS. Routing in MANET: AODV, DSR, Mobile IP.</p>	08
5	<p>Application Layer Protocols DNS, SMTP, POP, FTP, HTTP. Network Security: Authentication, Basics of public key and private key cryptography, digital signatures and certificates, firewalls.</p>	07

Text Books			
Sr. No.	Title	Author	Publisher
1	Computer Networks	A. Tanenbaum	5th Edition, 2011

Reference Books			
Sr. No.	Title	Author	Publisher
1	Data Communications and Networking	B. Forouzan	5th Edition, 2013
2	Computer Networks: A Systems Approach	Larry Peterson and Bruce Davie	Morgan Kaufmann Publication, 5 th Edition, 2012.
3	An Engineering Approach to Computer Networking	S. Keshav	Addison-Wesley Professional
4	Computer Networks and Internets	D. Comer	Pearson Education, 6th Edition, 2014
5	Computer Communications and Networking Technologies	M. Gallo, W. Hancock	Brooks/Cole Publisher, 2001

Title of the Course: Artificial Intelligence Course Code: 25MCA1203	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic knowledge of Data Structures, Algorithms, Discrete Mathematics, and Programming fundamentals.

Course Description:

This course introduces the fundamentals of Artificial Intelligence, focusing on intelligent agents, search strategies, knowledge representation, logical reasoning, learning methods, and expert systems. It explores both theoretical foundations and practical applications in problem-solving and decision-making environments.

Course Objectives:

By the end of this course, the students will be able to:

1. To understand the foundations and evolution of Artificial Intelligence.
2. To apply various search techniques for problem-solving.
3. To explore knowledge representation and reasoning mechanisms.
4. To implement learning models including decision trees and reinforcement learning.
5. To study expert systems and knowledge engineering principles.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Understand the fundamental concepts, history, and applications of Artificial Intelligence.
CO2	Apply problem-solving techniques including search algorithms, heuristics, and Optimization methods.
CO3	Use knowledge representation methods such as logic, semantic networks, and frames.
CO4	Develop AI systems using reasoning, planning, and learning techniques including machine learning basics.
CO5	Understand natural language processing and computer vision fundamentals.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2		2					2
CO2	3	3	3	2	3		2		2	2		2
CO3	3	3	3	2	3		2		2	2		2
CO4	3	3	3	3	3		2		2	2	2	3
CO5	3	2	2	2	2		2					3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation.	08
2	Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing-Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions.	08
3	Knowledge representation issues, predicate logic- logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Baye's probabilistic interferences and dempstershafer theory.	08
4	First order logic. Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining, Resolution, learning from observation Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods, Reinforcement Learning.	08
5	Expert systems- Introduction, basic concepts, structure of expert systems, the human element in expert systems how expert systems works, problem areas addressed by expert systems, expert systems success factors, types of expert systems, expert systems and the internet interacts web, components of an expert system, Knowledge base, Inference Engine, User interface, types of reasoning, forward	08

	chaining, backward chaining, characteristics of expert system. knowledge engineering, scope of knowledge, difficulties, in knowledge acquisition methods of knowledge acquisition, machine learning, intelligent agents, selecting an appropriate knowledge acquisition method, societal impacts reasoning in artificial intelligence, inference with rules, with frames: model based reasoning, case based reasoning, explanation & meta knowledge inference with uncertainty representing uncertainty.	
--	--	--

Text Books			
Sr. No.	Title	Author	Publisher
1	Artificial Intelligence – A Modern Approach	S. Russel and P. Norvig	Second Edition, Pearson Education
2	Computational Intelligence: a logical approach	David Poole, Alan Mackworth, Randy Goebel	Oxford University Press
3	Artificial Intelligence: Structures and Strategies for complex problem solving	G. Luger	Fourth Edition, Pearson Education

Reference Books			
Sr. No.	Title	Author	Publisher
1	Artificial Intelligence	Elaine Rich, Kevin Knight, Shivashankar B. Nair	Third Edition, Tata McGraw-Hill
2	Artificial Intelligence: A new Synthesis	J. Nilsson	Elsevier Publishers

Title of the Course: Program Elective-I A) Internet of Things Course Code: 25MCA1204	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic knowledge of computer networks, communication technologies, and programming fundamentals.

Course Description:

This course introduces the fundamentals of the Internet of Things (IoT), including architecture, smart devices, networking, data analytics, and security. It explores real-world IoT applications through case studies in smart cities, healthcare, and agriculture.

Course Objectives:

By the end of this course, the students will be able to:

1. To understand the foundational concepts, architecture, and impact of IoT.
2. To explore the role of sensors, actuators, and smart objects in IoT systems.
3. To learn about IP-based communication and protocols for IoT networking.
4. To introduce data analytics, machine learning, and security for IoT applications.
5. To examine IoT implementation strategies through real-world case studies

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Understand the fundamentals, architecture, and challenges of IoT systems and networks.
CO2	Analyze and explain the role of sensors, actuators, and smart objects in IoT systems.
CO3	Explain the use of IP-based communication protocols and optimization techniques for IoT networks.
CO4	Apply knowledge of data analytics, edge computing, and security mechanisms to IoT applications.
CO5	Evaluate real-world IoT case studies and develop IoT-based solutions using appropriate technology.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			2							2
CO2	2	3	2	2	2		2		2			2
CO3	3	3	3	2	3		2		2	2	2	2
CO4	2	2	3	3	3	2	2	2	3	2	3	3
CO5	3	2	3	3	3	2	3	2	3	3	3	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Introduction What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.	08
2	Smart Objects The “Things” in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies.	08
3	IP as the IoT Network Layer IP as the IoT Network Layer, The Business Case for IP, the need for Optimization, Optimizing IP for IoT, Profiles and Compliances, Application Protocols for IoT, The Transport Layer, IoT Application Transport Methods	08
4	Data and Analytics for IoT Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics, Securing IoT. Attacks on IoT Devices.	08
5	Case Studies An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security Architecture, Smart City Use-Case Examples. An IoT Strategy for healthcare System. An IoT Strategy for smart agriculture System.	08

Text Books			
Sr. No.	Title	Author	Publisher
1	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry	1st Edition, Pearson Education
2	Internet of Things	Srinivasa K G	CENGAGE Learning India, 2017

Reference Books			
Sr. No.	Title	Author	Publisher
1	Internet of Things (A Hands-On-Approach)	Vijay Madisetti and Arshdeep Bahga	1st Edition, VPT, 2014. (ISBN: 978-8173719547)
2	Internet of Things: Architecture and Design Principles	Raj Kamal	1st Edition, McGraw Hill Education, 2017 ISBN: 978-9352605224

Title of the Course: Program Elective-I B) Human Computer Interaction Course Code: 25MCA1204	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic knowledge of computer programming and software development, Familiarity with web technologies (HTML, CSS, basic JavaScript) or UI frameworks

Course Description:

This course introduces the fundamental concepts, principles, and practices of Human-Computer Interaction (HCI). It focuses on the design, evaluation, and implementation of user-centered interfaces that enhance user experience and usability. Students will explore topics such as interaction design, user interface (UI) development, usability engineering, cognitive models, and accessibility. The course also covers modern trends in HCI, including touch, gesture, voice-based interfaces, and human-centered AI.

Course Objectives:

By the end of this course, the students will be able to:

1. To introduce the fundamental concepts and principles of Human-Computer Interaction, focusing on designing user-centered systems.
2. To understand human cognitive and perceptual capabilities that influence the design of effective and usable interfaces.
3. To learn about IP-based communication and protocols for IoT networking.
4. To explore various interaction styles and interface design paradigms, including graphical, voice, gesture, and touch-based interfaces.
5. To develop the ability to evaluate user interfaces through usability testing, heuristic evaluation, and other assessment techniques.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Explain the fundamental principles and components of Human-Computer Interaction and user-centered design.
CO2	Analyze user needs and behaviors to inform the design of effective and intuitive user interfaces.
CO3	Design interactive prototypes using appropriate tools and techniques for various types of user interfaces.
CO4	Evaluate user interfaces for usability, accessibility, and performance using standard evaluation methods.
CO5	Apply cognitive and perceptual principles to improve user experience in software and web applications

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2							2		2
CO2	2	3	3	2	2	2				2		2
CO3	2	2	3	2	3				2	2	2	2
CO4	2	3	2	3	2	2				2		2
CO5	3	2	3	2	2	2				2		3

Assessment Scheme:

Two components in semester Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%,30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Fundamentals: The Human: I/O channels – Memory – Reasoning and problem solving; The Computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles –elements – interactivity- Paradigms. - Case Studies.	08
2	Design & Software Process: Interactive Design: Basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process: Software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules: principles, standards, guidelines, rules. Evaluation Techniques – Universal Design	08
3	Models & Theories: HCI Models: Cognitive models: Socio-Organizational issues and stakeholder requirements –Communication and collaboration models- Hypertext, Multimedia and WWW .	08

4	Mobile HCI: Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools. - Case Studies	08
5	Web Interface Design: Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow - Case Studies	08

Text Books			
Sr. No.	Title	Author	Publisher
1	Human Computer Interaction	Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale	3 rd Edition, Pearson Education, 200
2	Mobile Design and Development	Brian Fling	First Edition, O'Reilly Media Inc., 2009
3	Designing Web Interfaces	Bill Scott and Theresa Neil	First Edition, O'Reilly, 2009

Reference Books			
Sr. No.	Title	Author	Publisher
1	Interaction Design: Beyond Human-Computer Interaction	Helen Sharp, Yvonne Rogers, Jenny Preece	4 rd Edition, Wiley Publication

Title of the Course: Program Elective-I C) Advance Database Technologies Course Code: 25MCA1204	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Strong understanding of Relational Database Management Systems (RDBMS), Basic knowledge of programming languages

Course Description:

This course provides an in-depth exploration of advanced concepts in database systems beyond the fundamentals of relational databases. It covers emerging database models and technologies such as NoSQL databases, distributed databases, object-oriented databases, data warehousing, data mining, and database security. Students will gain hands-on experience with modern database platforms and learn to handle large-scale, complex, and unstructured data. The course also introduces advanced topics like query optimization, transaction management, and big data technologies.

Course Objectives:

By the end of this course, the students will be able to:

1. To explore advanced data models and database architectures, including NoSQL, distributed, and object-oriented databases.
2. To understand the principles of data warehousing and data mining for analytical processing and decision-making.
3. To study advanced transaction management, query optimization, and database performance tuning techniques.
4. To introduce database security, access control, and recovery techniques to ensure data integrity and confidentiality.
5. To provide practical exposure to modern database tools and technologies used in big data and enterprise applications.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Analyze and apply advanced data models such as NoSQL, object-oriented, and distributed databases for specific application needs.
CO2	Design and implement data warehousing solutions and perform basic data mining operations for business intelligence.
CO3	Optimize complex queries and manage database transactions effectively to improve system performance and reliability.
CO4	Evaluate and implement database security techniques, including access control, encryption, and backup/recovery mechanisms.
CO5	Use modern database technologies and tools to manage large-scale and unstructured data in real-world scenarios.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			2							3
CO2	2	3	2	2	2		2		2			3
CO3	3	3	3	2	3		2		2	2	2	2
CO4	2	2	3	3	3	2	2	2	3	2	3	2
CO5	3	2	3	3	3	2	3	2	3	3	3	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Distributed Systems – Introduction – Architecture – Distributed Database Concepts – Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing	08
2	Active Databases Model – Design and Implementation Issues - Temporal Databases – Temporal Querying - Spatial Databases: Spatial Data Types, Spatial Operators and Queries – Spatial Indexing and Mining – Applications -- Mobile Databases: Location and Handoff Management, Mobile Transaction Models – Deductive Databases - Multimedia Databases.	08
3	NoSQL – CAP Theorem – Sharding - Document based – MongoDB Operation: Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding- Cassandra: Data Model, Key Space, Table Operations, CRUD Operations, CQL Types – HIVE: Data types, Database Operations, Partitioning – HiveQL – OrientDB Graph	08

	database – OrientDB Features	
4	Structured, Semi structured, and Unstructured Data – XML Hierarchical Data Model – XML Documents – Document Type Definition – XML Schema – XML Documents and Databases –XML Querying – XPath – XQuery	08
5	IR concepts – Retrieval Models – Queries in IR system – Text Preprocessing – Inverted Indexing – Evaluation Measures – Web Search and Analytics – Current trends	08

Text Books			
Sr. No.	Title	Author	Publisher
1	Database System Concepts	Abraham Silberschatz, Henry F Korth, S. Sudharshan	Seventh Edition, McGraw Hill, 2019
2	Fundamentals of Database Systems	R. Elmasri, S.B. Navathe	Seventh Edition, Pearson Education/Addison Wesley, 2017
3	Next Generation Databases, NoSQL, NewSQL and Big Data	Guy Harrison	First Edition, Apress publishers, 2015

Reference Books			
Sr. No.	Title	Author	Publisher
1	Data Mining: Concepts and Techniques	Jiawei Han, MichelineKamber, Jian Pei	Third Edition, Morgan Kaufmann, 2012
2	Teach Yourself NoSQL with MongoDB in 24 Hours	Brad Dayley	Sams Publishing, First Edition, 2014.
3	An Introduction to Database Systems	C. J. Date, A. Kannan, S. Swamynathan	Eighth Edition, Pearson Education, 2006

Title of the Course: Open Elective-I A)Research Methodology Course Code: 25MCA1205	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic understanding of statistics, data handling, academic writing, and foundational knowledge in business or social sciences

Course Description:

This course provides an overview of research methodology, including research design, hypothesis formulation, data collection, sampling, analysis, and scientific writing. It emphasizes both qualitative and quantitative methods and introduces tools for academic research and publishing, particularly in computer science.

Course Objectives:

By the end of this course, the students will be able to:

1. Understand the fundamentals and types of research.
2. Develop skills in formulating research problems and hypotheses.
3. Learn various research designs and measurement techniques.
4. Apply sampling methods and perform basic data analysis.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Understand foundational concepts and language of research including theory, hypothesis, variables, and scientific methods.
CO2	Apply research methodology and scientific process for formulating problems, hypotheses, and designing research.
CO3	Identify appropriate research designs and compare qualitative and quantitative research approaches.
CO4	Understand concepts of measurement and sampling; evaluate tools for data collection and analysis.
CO5	Develop skills in data interpretation, academic writing, ethical publishing, and use of research tools/databases.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3		2						2		2
CO2	2	3	2	3	2					2		2
CO3	2	3	2	3	2					2		2
CO4	2	3		3	3					2		2
CO5		2		2	3			3	2	3	2	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and

End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Foundations of Research: Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology, Need of Research in Business and Social Sciences, Objectives of Research, Issues and Problems in Research, Characteristics of scientific method - Understanding the language of Research - Concept, Construct, Definition, Variable Research Process.	08
2	Research Methodology: Meaning of Research Methodology, Stages in Scientific Research Process: Identification and Selection of Research Problem, Formulation of Research Problem, Review of Literature, Formulation of Hypothesis, Formulation of research Design, Sample Design, Data Collection, Data Analysis, Hypothesis testing and Interpretation of Data, Preparation of Research Report Problem Identification & Formulation - Research Question - Investigation Question- Measurement Issues - Hypothesis - Qualities of a good Hypothesis, Null Hypothesis & Alternative Hypothesis. Hypothesis Testing - Logic & Importance.	08
3	Research Design: Concept and Importance in Research - Features of a good research design - Exploratory Research Design - concept, types and uses, Descriptive Research Designs - concept, types and uses. Experimental Design: Concept of Independent & Dependent variables. Qualitative and Quantitative Research: Qualitative research - Quantitative research - Concept of measurement, causality, generalization, replication. Merging the two approaches.	08
4	Measurement: Concept of measurement- what is measured? Problems in measurement in research- Validity and Reliability. Levels of measurement, Nominal, Ordinal, Interval, Ratio. Sampling: Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error,	08

	Sample Size, Non Response. Characteristics of a good sample. Probability Sample- Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample, Data Analysis: Data Preparation - Univariate analysis (frequency tables, bar charts, pie charts, percentages)	
5	Interpretation of Data and Paper Writing- Layout of a Research Paper, Journals in Computer Science, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism. Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Computer Science. Discipline. Use of tools I techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX/ MS Office, Software for detection of Plagiarism	08

Text Books			
Sr. No.	Title	Author	Publisher
1	Fundaentals of Statistics	S.C. Gupta, V.K. Kapoor	Sultan Chand & Sons (Latest Edition)
2	Research Methodology: Methods and Techniques	C. R. Kothari	New Age International Publishers (Revised Edition)
3	Select references from the Internet	Google Scholar, IEEE Xplore, SpringerLink	-

Reference Books			
Sr. No.	Title	Author	Publisher
1	Business Research Methods	Alan Bryman & Emma Bell	Oxford University Press.

Title of the Course: Open Elective-I B) Cyber Laws Course Code: 25MCA1205	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic knowledge of computers, internet, and general legal framework in India.

Course Description:

This course provides an overview of cyber laws, e-commerce regulations, and e-governance in India with reference to a free-market economy. It covers electronic records, digital signatures, intellectual property rights, international cyber law efforts, offences under the IT Act, and related legal provisions.

Course Objectives:

By the end of this course, the students will be able to:

1. To understand the legal framework governing e-commerce, e-governance, and cyberspace in India.
2. To study laws on electronic records, digital signatures, and intellectual property in cyberspace.
3. To explore international initiatives and conventions on cybercrime.
4. To examine offences, penalties, and enforcement under the IT Act.
5. To analyze the role of electronic evidence and miscellaneous IT Act provisions

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Explain the concepts of Internet, E-commerce, E-governance, and the role of electronic signatures in a free market economy, particularly in the Indian context.
CO2	Interpret and apply the legal aspects of electronic records, digital signatures, and certifying authority regulations in India, along with intellectual property rights protection in cyberspace.
CO3	Analyze international efforts and conventions, such as the Council of Europe Convention on Cyber Crimes, to understand global perspectives on cyberspace laws.
CO4	Evaluate the penalties, compensation mechanisms, offences, and judicial review processes under the Indian Information Technology Act.
CO5	Examine miscellaneous provisions of the IT Act, including electronic evidence handling, amendments, and rules for certifying authorities and website blocking.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2				3		3		2		2
CO2	2	3	2	2	2	3		3	2	2		2
CO3	2	3		3		2		2		2		2
CO4	2	3	2	3	2	3		3		2		2
CO5	2	3		2	2	3		3		2		2

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Internet, E-Commerce and E-Governance with Reference to Free Market Economy Understanding Computers, Internet and Cyber Laws, Conceptual Framework of E-commerce: E-governance, The Role of Electronic Signatures in E-commerce with Reference to Free Market Economy in India.	08
2	Law Relating to Electronic Records and Intellectual Property Rights in India Legal Aspects of Electronic Records/Digital Signatures, The Rules and Regulations of Certifying Authorities in India, Protection of Intellectual Property Rights in Cyberspace in India.	08
3	International Efforts Relating to Cyberspace Laws and Cyber Crimes International Efforts Related to Cyberspace Laws, Council of Europe (COE) Convention on Cyber Crimes.	08
4	Penalties, Compensation and Offences Under the Cyberspace and Internet in India Penalties, Compensation and Adjudication of Violations of Provisions of IT Act and Judicial Review Some Important Offences under the Cyberspace Law and the Internet in India, Other Offences under the Information Technology Act in India.	08
5	Miscellaneous Provisions of It Act and Conclusions the Role of Electronic Evidence and the Miscellaneous Provisions of the IT Act, Information Technology Act as Amended up to 2008, The Information Technology (Certifying Authorities) Rules, 2000, The Information Technology (Certifying Authorities) Rules, 2000, Ministerial Order on Blocking of Websites.	08

Text Books			
Sr. No.	Title	Author	Publisher
1	E-Commerce: Fundamentals and Applications	Henry Chan, Raymond Lee, Tharam Dillon, Elizabeth Chang	5th Edition, Wiley, 2019
2	Law Relating to Computers, Internet and E-Commerce	Vakul Sharma	2nd Edition, Universal Law Publishing, 2018

Reference Books			
Sr. No.	Title	Author	Publisher
1	Cyber Laws and It Protection	Harish Chander	PHI Publication
2	Cyber Law and Information Security	Faiyaz Ahamed, KLSI	Dreamtech Press
3	Information Technology Law: Law and Society	Murray	3rd Edition, Oxford University Press Oxford 2016
4	Cyber Security	Sunit Belapure Nina Godbole	Wiley India Pvt. Ltd
5	Cyber Laws and It Protection	Harish Chander	PHI Publication

Title of the Course: Open Elective-I C) Employability Skill Development Course Code: 25MCA1205	L	T	P	Credit
	3	--	--	3

Course Prerequisite:

Basic proficiency in English (reading, writing, speaking, and listening), Fundamental knowledge of computer science concepts, Familiarity with common office productivity tools (e.g., MS Office, email, presentations), Willingness to participate in group activities, discussions, and presentations

Course Description:

The Employability Skill Development course is designed to equip MCA students with the essential soft skills and professional competencies required to succeed in the modern workplace. This course emphasizes communication skills, teamwork, problem-solving, critical thinking, adaptability, and professional etiquette. It also covers resume writing, interview techniques, time management, and leadership skills to prepare students for recruitment processes and real-world challenges in the IT industry. Through interactive sessions, workshops, and practical exercises, students will develop a well-rounded personality and enhance their readiness for diverse career opportunities.

Course Objectives:

By the end of this course, the students will be able to:

1. Enhance communication skills (verbal, non-verbal, and written) essential for professional and workplace interactions.
2. Develop interpersonal and teamwork skills required for collaborative work environments.
3. Improve problem-solving and decision-making abilities through real-world scenarios and activities.
4. Build confidence and presentation skills to effectively express ideas and opinions.
5. Prepare students for job interviews and group discussions through mock sessions and feedback.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Demonstrate effective oral and written communication skills suitable for academic and professional settings.
CO2	Exhibit teamwork, leadership, and interpersonal skills essential for collaborative work environments
CO3	Apply problem-solving and critical thinking techniques in workplace-like scenarios.
CO4	Prepare and present professional documents such as resumes, cover letters, and emails effectively.
CO5	Perform confidently in interviews, group discussions, and public speaking situations.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2		2		2		2	2
CO2	3	3	3	2	2	2	2	2	3	3	2	2
CO3	2	2	3	2	3		2	2	3		2	3
CO4		2	2				2	3	3	2	3	2
CO5		2	2		2		2	2	3	2	3	2

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), Mid Semester Examination (MSE) and End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment Component	Marks
CA1	10
MSE	30
CA2	10
ESE	50

CA1 and **CA2** are based on Surprise test/ Assignment/ Quiz/Seminar/Group discussions presentation, etc.

MSE is based on 50% of course content.

ESE is based on 100% course content with 60-70% weightage for course content covered after MSE.

Course Contents

Unit No.	Unit Title and Contents	Hours
1	Soft Skills & Communication basics: Soft skills Vs hard skills, Skills to master, Interdisciplinary relevance, Global and national perspectives on soft skills, Resume, Curriculum vitae, How to develop an impressive resume, Different formats of resume Chronological, Functional, Hybrid, Job application or cover letter, Professional presentation- planning, preparing and delivering presentation, Technical writing.	08
2	Arithmetic and Mathematical Reasoning and Analytical Reasoning and Quantitative Ability: Aspects of intelligence, Bloom taxonomy, multiple intelligence theory, Number sequence test, mental arithmetic (square and square root, LCM and HCF, speed calculation, reminder theorem). Matching, Selection, Arrangement, Verifications (Exercises on each of these types). Verbal aptitude (Synonym, Antonym, Analogy).	08

3	<p>Grammar and Comprehension: English sentences and phrases, Analysis of complex sentences, Transformation of sentences, Paragraph writing, Story writing, Reproduction of a story, Letter writing, précis writing, Paraphrasing and e-mail writing.</p>	08
4	<p>Skills for interviews: Interviews- types of interviews, preparatory steps for job interviews, interview skill tips, Group discussion- importance of group discussion, types of group discussion, difference between group discussion, panel discussion and debate, personality traits evaluated in group discussions, tips for successful participation in group discussion, Listening skills- virtues of listening, fundamentals of good listening, Non-verbal communication-body movement, physical appearance, verbal sounds, closeness, time.</p>	08
5	<p>Problem Solving Techniques: Problem solving model: 1. Define the problem, 2. Gather information, 3. Identify various solution, 4. Evaluate alternatives, 5. Take actions, 6. Evaluate the actions. Problem solving skills: 1. Communicate. 2. Brain storming, 3. Learn from mistakes.</p>	08

Text Books			
Sr. No.	Title	Author	Publisher
1	Soft Skills- An integrated approach to maximize personality	R. Gajendra Singh Chauhan, Sangeeta Sharma	ISBN: 987-81-265-5639-7, First Edition 2016

Reference Books			
Sr. No.	Title	Author	Publisher
1	English grammar and Composition	Wiley Wren and Martin,	S.Chand publications
2	A modern approach to verbal reasoning	R. S. Aggarwal	S. Chand publications
3	The Complete Book of Intelligence Test	Philip Carter	John Willey & Sons Ltd.-

Title of the Course: Object Design & Agile Development Lab Course Code: 25MCA1201L	L	T	P	Credit
	--	--	2	1

Course Prerequisite:

Basic programming knowledge. Understanding of software development lifecycle. Familiarity with object- oriented programming concepts

Course Description:

This course covers advanced software development methodologies, focusing on object-oriented programming and design using UML, distributed computing, and agile software development practices. It explores frameworks like Scrum and Kanban, design principles, and emphasizes software reuse, testing, and continuous integration for efficient and flexible software delivery.

Course Objectives:

By the end of this course, the students will be able to:

1. Understand object-oriented concepts, design, and analysis using UML
2. Learn distributed object computing and middleware standards
3. Grasp agile methodologies, principles, and benefits
4. Apply Scrum and Kanban frameworks in project management
5. Develop skills in test-driven development, continuous integration, and risk-based testing.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Apply object-oriented concepts and modeling techniques using UML for software analysis and design.
CO2	Understand and evaluate distributed object computing and middleware standards such as COM, DCOM, and CORBA.
CO3	Explain the principles, values, and benefits of Agile software development methodologies.
CO4	Apply Scrum framework elements (roles, events, artifacts) to manage Agile software projects.
CO5	Apply Kanban framework and Agile testing practices including test-driven development and test automation.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2		2		2		2	3
CO2	3	3	3	2	2	2	2	2	3	3	2	3
CO3	2	2	3	2	3		2	2	3		2	3
CO4		2	2				2	3	3	2	3	3
CO5		2	2		2		2	2	3	2	3	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), End Semester Practical Oral Examination (POE), have 25%, 25% and 50% weightage, respectively.

Assessment Component	Marks
CA1	25
CA2	25
POE	--

CA1 and CA2 are based on 50% practical assignment.

Course Contents

Practical No.	List of Experiments	Hours
1	Designing a Real-World System Using UML Diagrams	02
2	Implementation of Core Design Patterns in Object-Oriented Programming	02
3	Developing a Distributed Client-Server Application Using CORBA	02
4	Integration of COM Components in a .NET Application	02
5	Modeling and Querying Data in an Object-Oriented Database	02
6	Refactoring Code Using SOLID Principles for Maintainability	02
7	Writing Effective User Stories and Acceptance Criteria in Agile	02
8	Simulating a Sprint Using Scrum Roles, Events, and Artifacts	02
9	Implementing a Kanban Board for Workflow Management	02
10	Test-Driven Development and Continuous Integration with Automated Testing	02

Text Books			
Sr. No.	Title	Author	Publisher
1	Object Oriented System Analysis	Sally Shlaer	Prentice Hall PTR
2	Object Oriented System Analysis and Design using UML	Simon Bennett	McGraw-Hill.
3	Agile Software Development with Scrum	Ken Schawber, Mike Beedle	Pearson
4	Agile Software Development, Principles, Patterns and Practices	Robert C. Martin	Prentice Hall

Reference Books			
Sr. No.	Title	Author	Publisher
1	Agile Testing: A Practical Guide for Testers and Agile Teams	Lisa Crispin, Janet Gregory	Addison Wesley
2	Agile: The Complete Overview of Agile Principles and Practices	Paul VII	Agile Product Management
3	Agile Software Development, Principles, Patterns, and Practices	Robert Martin	Pearson New International Edition

Title of the Course: Data Analysis using Python Lab Course Code: 25MCA1206L	L	T	P	Credit
	--	--	2	1

Course Prerequisite:

Basic programming knowledge. Basic knowledge of programming logic and algorithm design (e.g., flowcharts or pseudo code), Understanding of computer fundamentals (data types, memory, input/output), exposure to any programming language (like C/C++/Java)

Course Description:

This course introduces students to the Python programming language for solving computational problems across a range of application domains. Beginning with foundational programming constructs like variables, control flow, and data structures, the course progresses to more advanced topics such as functions, object- oriented programming, and error handling. A strong emphasis is placed on writing clear, efficient, and maintainable code. Additionally, the course integrates the use of Python's powerful standard and third-party libraries for data analysis, scientific computing, and real-time applications

Course Objectives:

By the end of this course, the students will be able to:

1. Understand the fundamental syntax and semantics of Python.
2. Apply conditional and iterative constructs to solve computational problems.
3. Implement classic searching and sorting algorithms using Python.
4. Work with Python's built-in data structures like lists, tuples, sets, and dictionaries.
5. Develop modular programs using functions, modules, and libraries.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Apply data cleaning and preprocessing techniques to prepare raw datasets for analysis using pandas
CO2	Perform exploratory data analysis and visualize datasets using Matplotlib
CO3	Conduct statistical analysis, correlation, regression, and hypothesis testing using SciPy and Python-based tools..
CO4	Implement advanced data analysis techniques including time series forecasting, dimensionality reduction, and clustering for real-world datasets.
CO5	Build, evaluate, and deploy supervised machine learning models and data analysis pipelines for predictive analytics.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2		2		2		2	3
CO2	3	3	3	2	2	2	2	2	3	3	2	3
CO3	2	2	3	2	3		2	2	3		2	3
CO4		2	2				2	3	3	2	3	3
CO5		2	2		2		2	2	3	2	3	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), End Semester Practical Oral Examination (POE), have 25%, 25% and 50% weightage, respectively.

Assessment Component	Marks
CA1	25
CA2	25
POE	50

CA1 and CA2 are based on 50% practical assignment.

POE is based on 100% Experiments

Course Contents

Practical No.	List of Experiments	Hours
1	Data Cleaning and Preprocessing Using Pandas	02
2	Exploratory Data Analysis (EDA) on a Real-World Dataset	02
3	Data Visualization Using Matplotlib and Seaborn	02
4	Performing Statistical Analysis Using SciPy	02
5	Correlation and Regression Analysis Using Python	02
6	Time Series Analysis and Forecasting Using Pandas and Statsmodels	02
7	Dimensionality Reduction Using PCA with Scikit-Learn	02
8	Clustering Data Using K-Means and Visualizing the Results	02
9	Classification Model Building Using Logistic Regression	02
10	Building and Evaluating a Machine Learning Pipeline for Data Analysis	02

Text Books			
Sr. No.	Title	Author	Publisher
1	Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython	Wes McKinney	O'Reilly & Associates Inc.
2	Python Data Science Handbook	Jake VanderPlas	O'Reilly Media.

Reference Books			
Sr. No.	Title	Author	Publisher
1	Python for Data & Analytics	Daniel Groner	--

Title of the Course: Artificial Intelligence Laboratory Course Code: 25MCA1203L	L	T	P	Credit
	--	--	2	1

Course Prerequisite:

Basic programming knowledge in any language (preferably Python or Java),, understanding of fundamental programming constructs like recursion, arrays, and control structures., Basic familiarity with algorithms and data structures.

Course Description:

This course offers practical hands-on experience with fundamental concepts and techniques of Artificial Intelligence through programming experiments. Students will study AI programming languages and environments such as Lisp, Prolog, Python, or Java. The course covers classical search algorithms, heuristic search, game theory methods like Min-Max and Alpha-Beta pruning, and constraint satisfaction problems. Through these experiments, students gain the skills to develop and analyze AI solutions for real-world problems such as puzzles, games, and optimization challenges.

Course Objectives:

By the end of this course, the students will be able to:

1. Understand the basics of AI programming languages/environments including Lisp, Prolog, Python, or Java.
2. Explore existing AI applications and their functionalities.
3. Implement fundamental AI search algorithms like depth-first search, breadth-first search, and best-first search.
4. Develop AI solutions for classic problems such as Tic-Tac-Toe, 8-puzzle, traveling salesman, and 8-queens.
5. Apply advanced AI techniques like Min-Max search and Alpha-Beta pruning in game playing.

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Understand and use AI programming languages/environments such as Lisp, Prolog, Python, or Java.
CO2	Analyze and explain existing AI applications and their problem-solving approaches.
CO3	Implement classical search algorithms including depth-first search and breadth-first search.
CO4	Solve heuristic search problems like 8 puzzle using best-first search techniques.
CO5	Develop game-playing AI using Min-Max search and Alpha-Beta pruning algorithms.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			3		2		2		2	3
CO2	3	3		2					2	2		3
CO3	3	3	2	2	3		3	3	2	2	3	3
CO4	3	3	2	2	3		3	3	2	2	3	3
CO5	3	3	2	2	3		3	3	2	2	3	3

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2), End Semester Practical Oral Examination (POE), have 25%, 25% and 50% weightage, respectively.

Assessment Component	Marks
CA1	25
CA2	25
POE	50

CA1 and CA2 are based on 50% practical assignment.

POE is based on 100% Experiments

Course Contents

Practical No.	List of Experiments	Hours
1	Write a Program to Implement Breadth First Search.	02
2	Write a Program to Implement Depth First Search.	02
3	Write a program to implement Hill Climbing Algorithm	02
4	Write a program to implement A* Algorithm	02
5	Write a program to implement Tic-Tac-Toe game.	02
6	Write a Program to Implement 8-Puzzle problem using Python.	02
7	Write a Program to Implement Water-Jug problem using Python	02
8	Write a Program to Implement Travelling Salesman Problem using Python.	02
9	Write a Program to Implement Alpha-Beta Pruning using Python.	02
10	Write a Program to Implement 8-Queens Problem using Python.	02
11	Write a Program to Implement Tower of Hanoi using Python.	02

Text Books			
Sr. No.	Title	Author	Publisher
1	Artificial Intelligence: A Modern Approach	Stuart Russell, Peter Norvig	Pearson 4th Edition, 2020

Reference Books			
Sr. No.	Title	Author	Publisher
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Prentice Hall 1st Edition, 1990
2	Artificial Intelligence: Foundations of Computational Agents	David L. Poole and Alan K. Mackworth	Cambridge University Press 2nd Edition, 2017

Title of the Course: Mini Project Course Code: 25MCA1207L	L	T	P	Credit
	--	--	2	1

Course Prerequisite:

1. Completion of core foundational courses in Computer Science and Engineering (such as Data Structures, Operating Systems, Computer Networks, etc.).
2. Basic knowledge of reading and interpreting academic papers or technical articles.
3. Familiarity with technical writing, implementation platforms and presentation tools (e.g., MS Word, LaTeX, PowerPoint).
4. A willingness to explore beyond the prescribed curriculum and independently investigate a selected topic.
5. Communication and comprehension skills sufficient to engage in discussions and deliver presentations in English.

Course Description:

The Mini Project course is designed to provide MCA students with practical experience in software development and project management. It enables students to apply theoretical knowledge gained in previous courses to solve real-world problems through the design and implementation of a software application or system. Students will work individually or in small teams under faculty supervision to complete the project lifecycle, including problem identification, requirements analysis, system design, implementation, testing, and documentation.

Course Objectives:

By the end of this course, the students will be able to:

1. To develop and strengthen the students' practical skills in software design and development.
2. To promote analytical thinking, problem-solving, and innovation.
3. To provide experience in project planning, execution, and documentation.
4. To improve communication and teamwork abilities through group collaboration (if applicable).

Course Outcomes:

CO	After the completion of the course the student should be able to
CO1	Identify and define a real-world problem and propose a feasible software solution.
CO2	Apply appropriate tools, technologies, and methodologies for software development.
CO3	Develop a working prototype or application with proper testing and validation.
CO4	Prepare professional-quality technical documentation and project reports.
CO5	Present and demonstrate their project effectively to an evaluation panel.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2		3	2	2	2	2	3
CO2	3	3	2	3	2		2		2	2		3
CO3	2	2	2		2	2	2		3	2		3
CO4		2	2		2		2		3	2	2	2
CO5	2	3	2	2	2	3	3		2	2	3	2

Assessment Scheme:

Two components of Continuous Assessment (CA-1, CA-2) will have 25% weightage, respectively and OE is having 50% weightage.

Assessment Component	Marks
CA1	25
CA2	25
OE	50